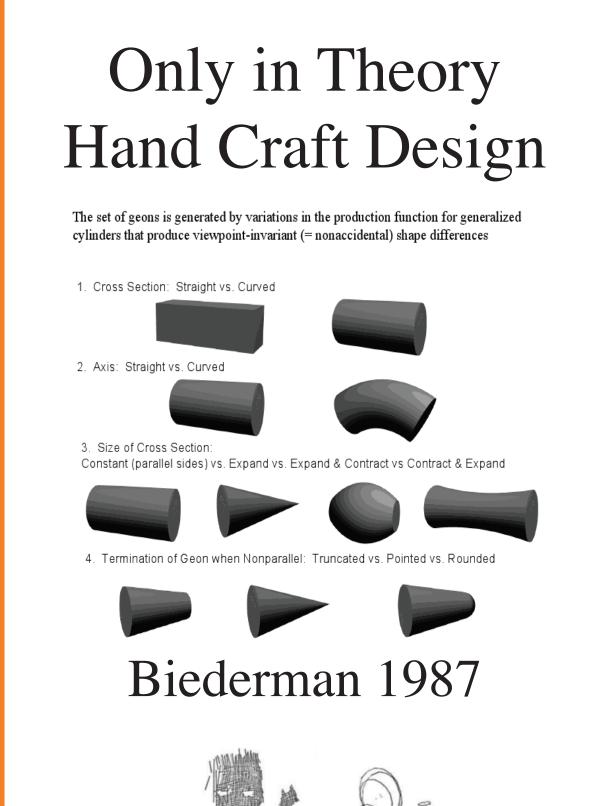


3D ShapeNets: A Deep Representation for Volumetric Shapes

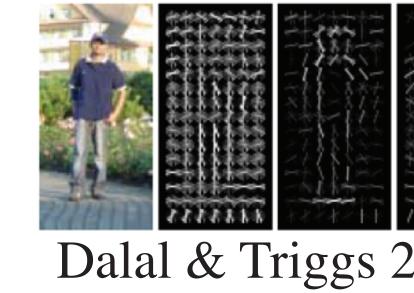
Xiaoou Tang

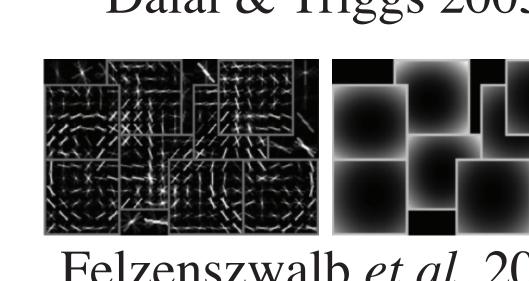


Motivation: 3D Shape Representation



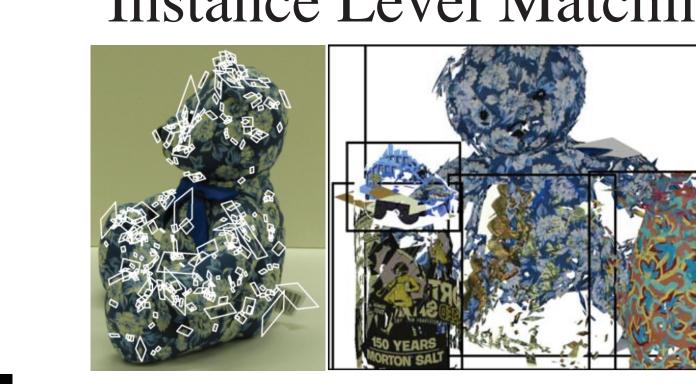
No State-of-the-arts Use 3D Shapes



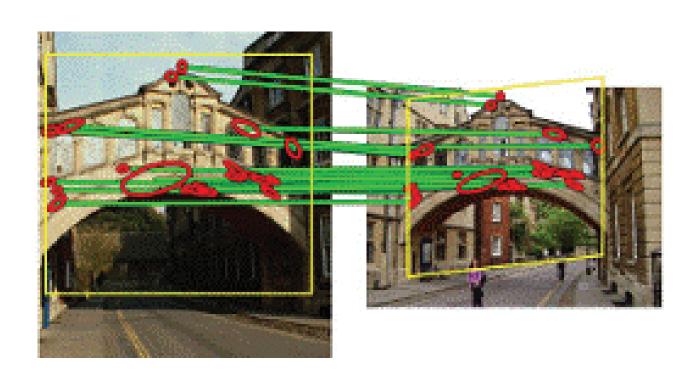


Girshick et al. 2014

Limited to Instance Level Matching



Rothganger et al. 2006



Philbin et al. 2007

Desirable Properties of a Good 3D Shape Representation:

- Data-driven: learn from data rather than predefined shape routines.
- Generic: any complex shapes rather than simple shape primitives.
- Compositional: compose complex shapes by assembling simple ones.
- Versatile: applicable to various vision tasks.

3D Deep Learning

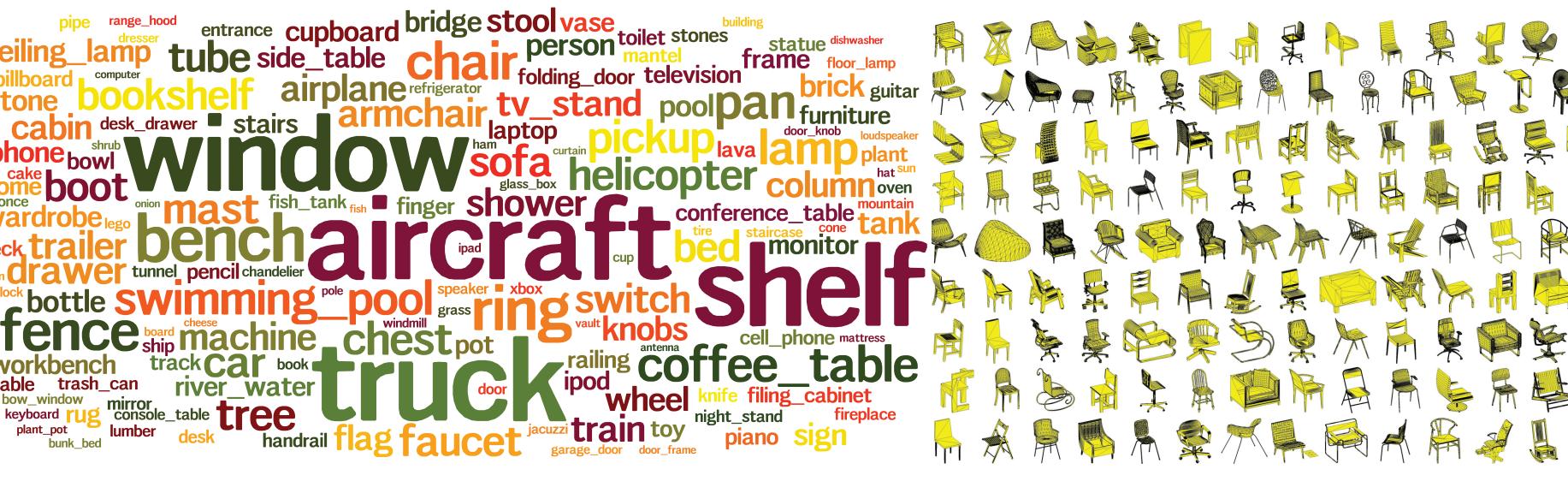
- 3D ShapeNets (a Convolutional Deep Belief Network) learns the joint distribution of generic 3D shapes across object category.
- Meaningful volumetric shapes could be sampled from the model.

Configuration of 3D ShapeNets

Layer	Type	Learning
1-3	convolutional RBM	Contrastive Divergence
4	fully connected RBM	Contrastive Divergence
5	multinomial label + Bernoulli feature forms an associate memory	Fast Persistent Contrastive Divergence

Princeton ModelNet Dataset

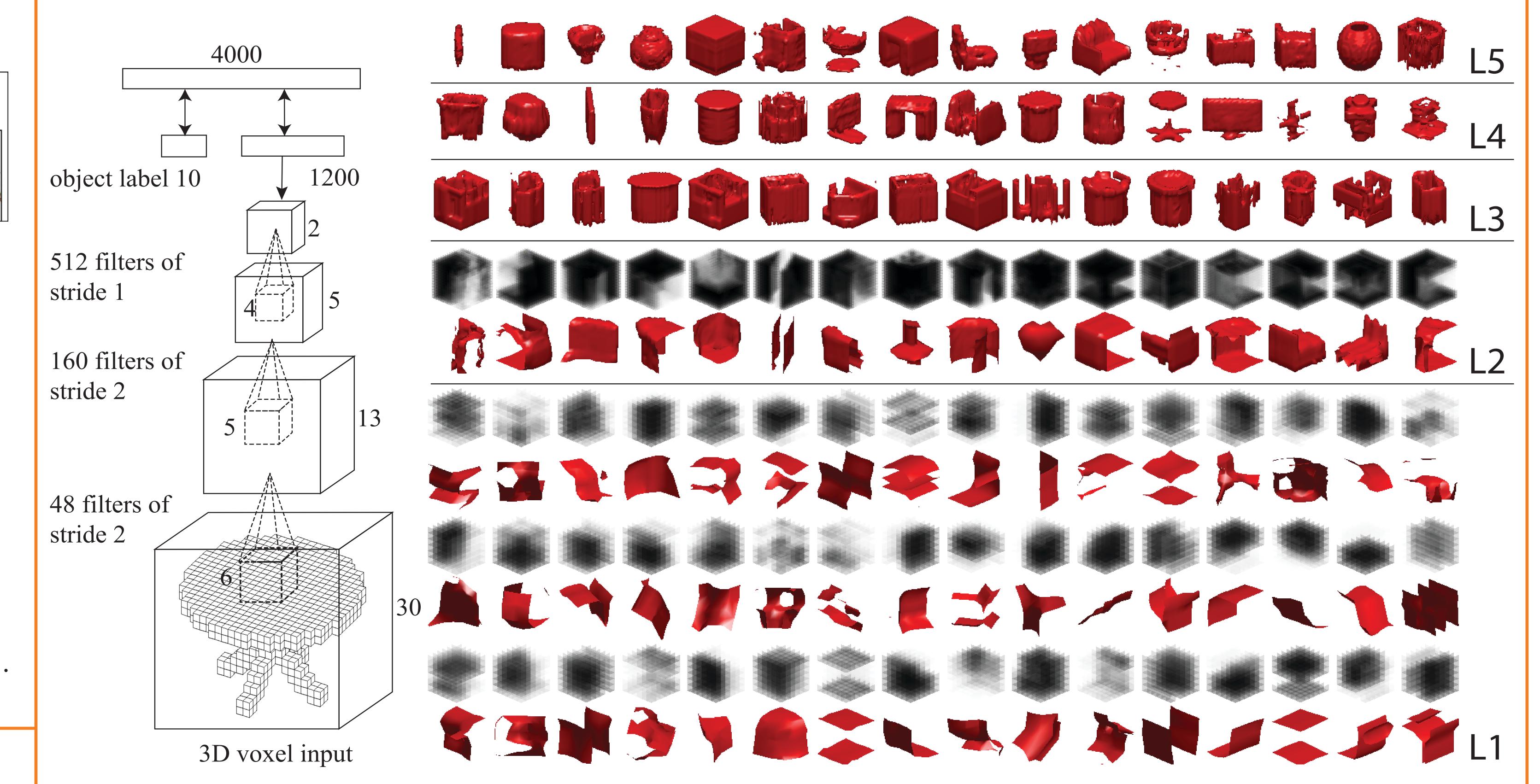
A large-scale CAD dataset of more than 150,000 models in 660 categories.

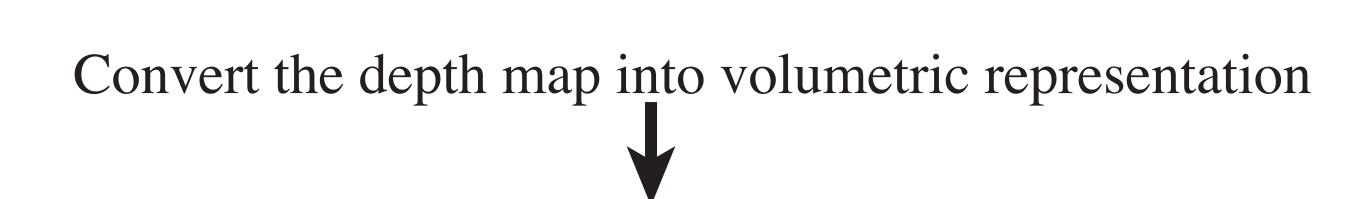


Object Categories Examples of Chairs

Code and Data: http://3DShapeNets.cs.princeton.edu

Zhirong Wu Shuran Song Aditya Khosla Fisher Yu Linguang Zhang

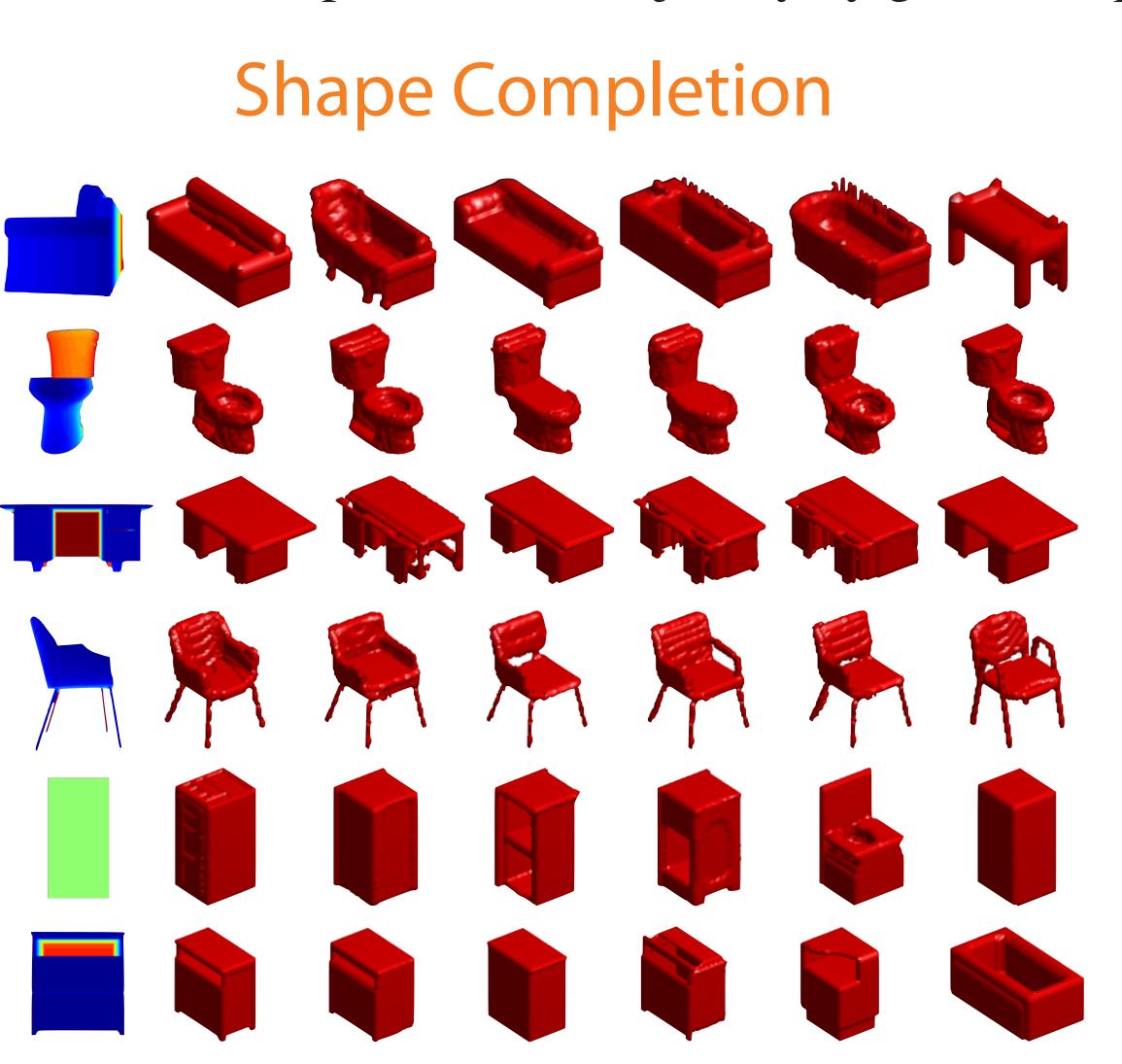




Identify free space, observed surface, unknow space

Inference Process

Infer unknown space and label jointly by gibbs sampling



results on synthetic depth

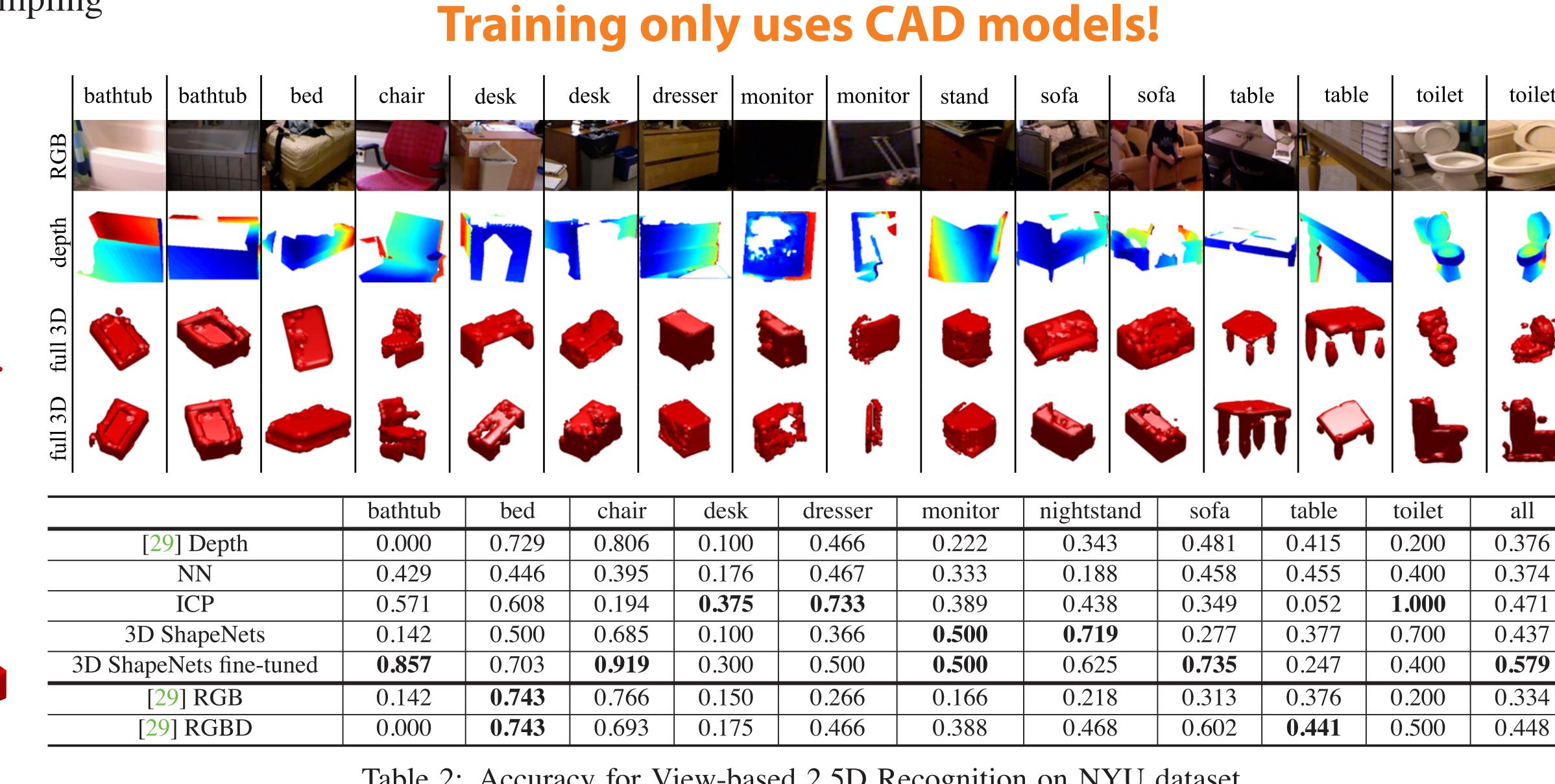


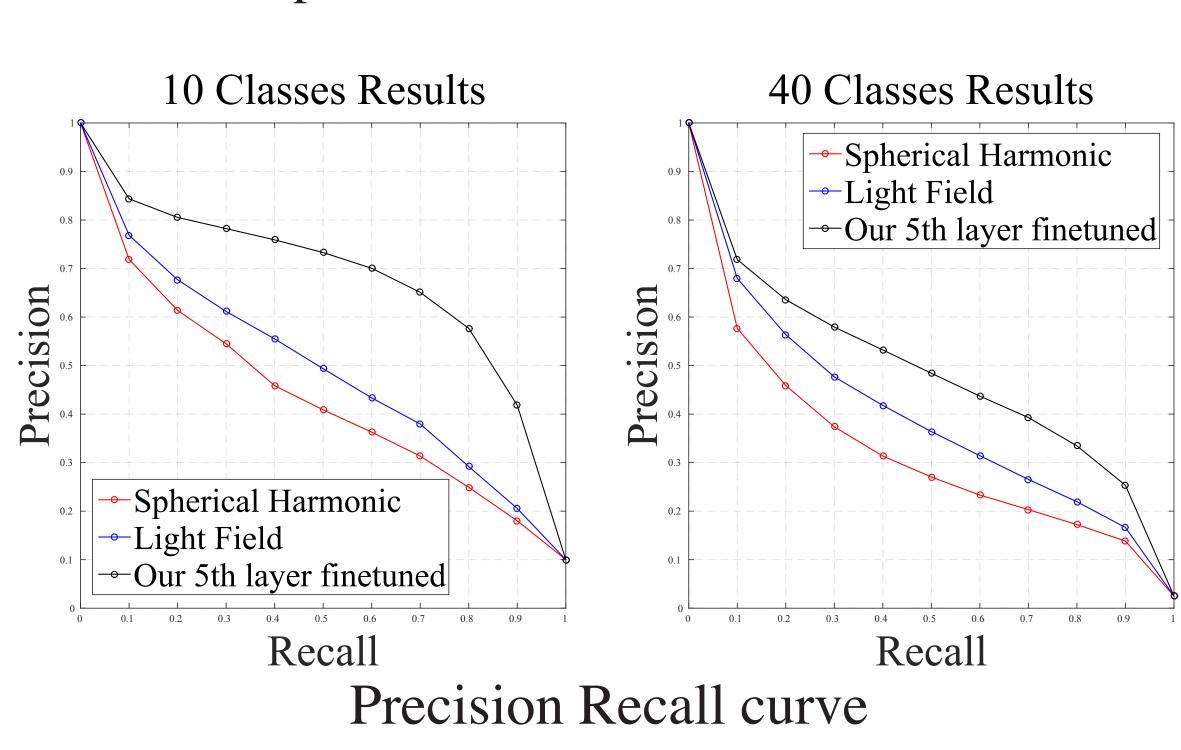
Table 2: Accuracy for View-based 2.5D Recognition on NYU dataset.

3D Feature Extraction

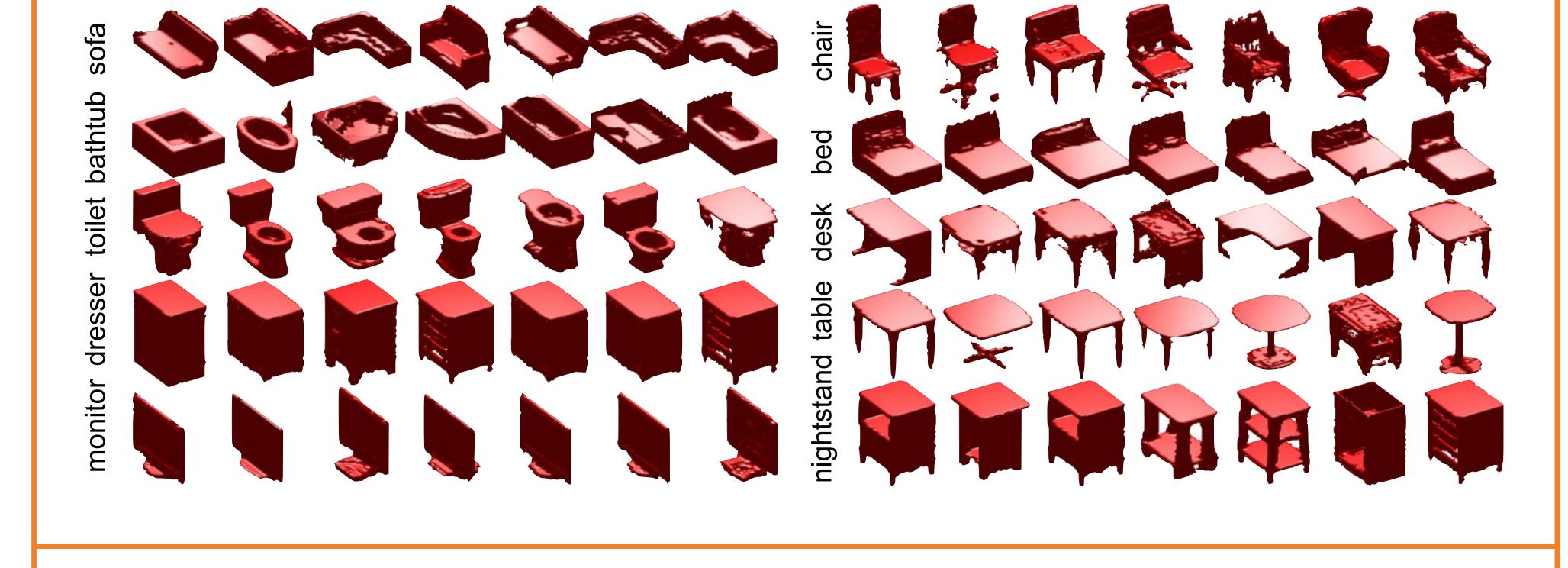
- 1. Convert 3D ShapeNets to a 3D CNN
- 2. Feature learning by back-propagation
- 3. Test for classification and retrieval

	10 classes	SPH [18]	LFD [8]	Ours
•	classification	79.79 %	79.87 %	83.54%
	retrieval AUC	45.97%	51.70%	69.28%
	retrieval MAP	44.05%	49.82%	68.26%
•	40 classes	SPH [18]	LFD [8]	Ours
•	classification	68.23%	75.47%	77.32%
	retrieval AUC	34.47%	42.04%	49.94%
	retrieval MAP	33.26%	40.91%	49.23%

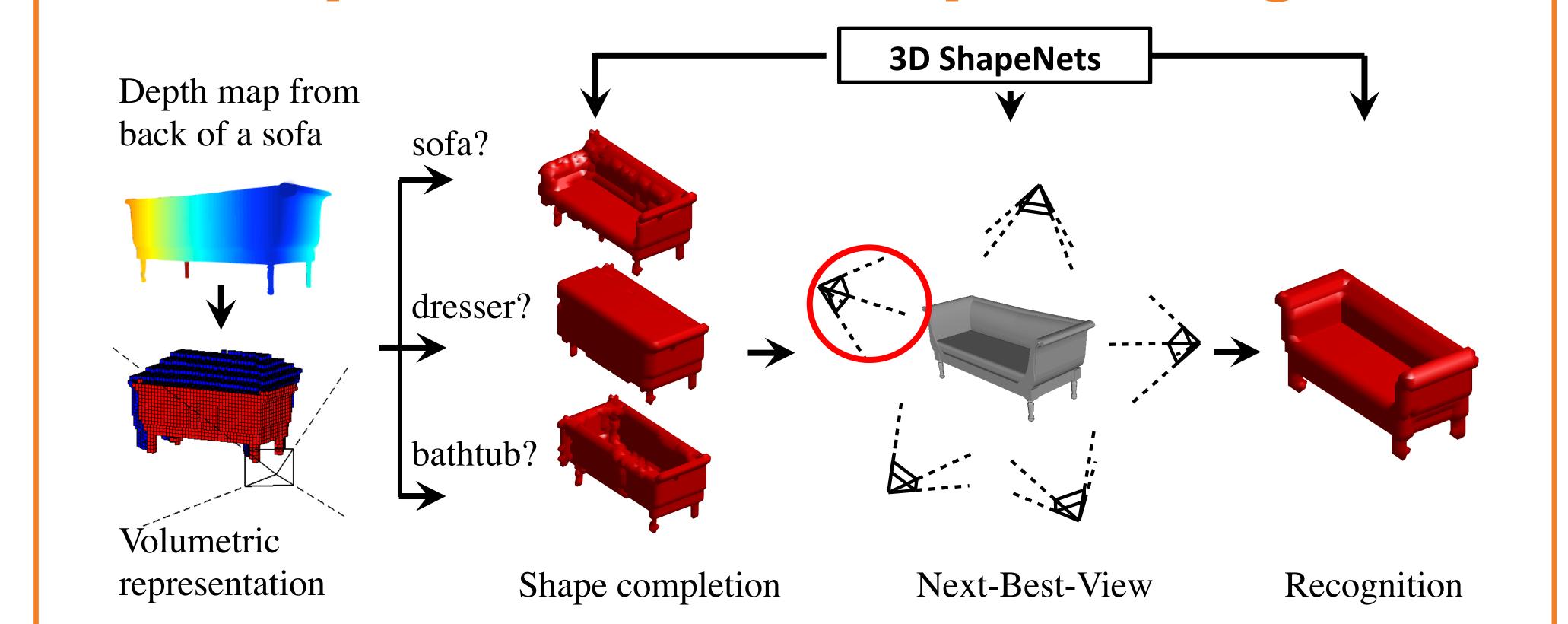
Table 1: Shape Classification and Retrieval Results.



3D Shape Generation



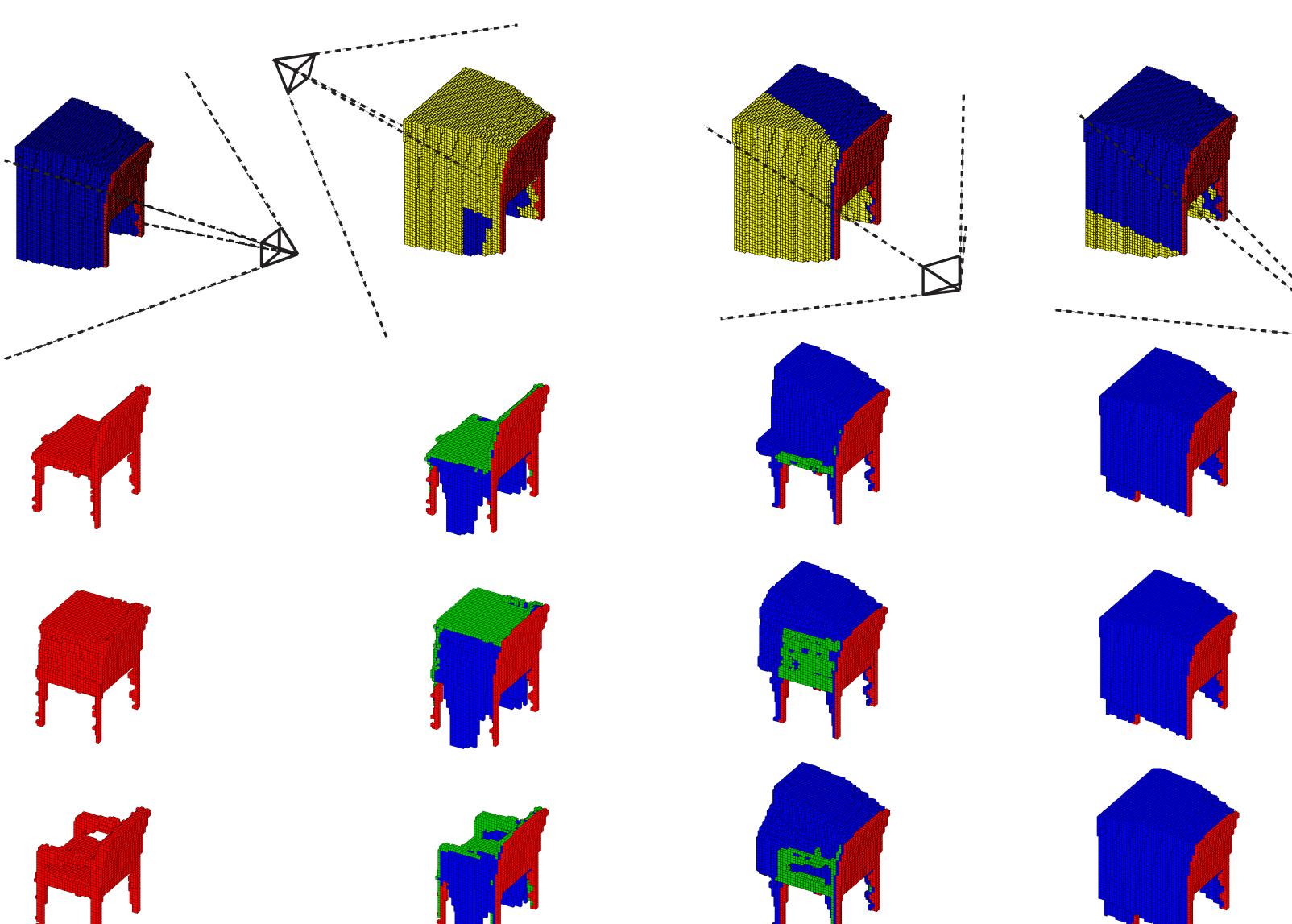
3D ShapeNets for 2.5 Depth Recognition

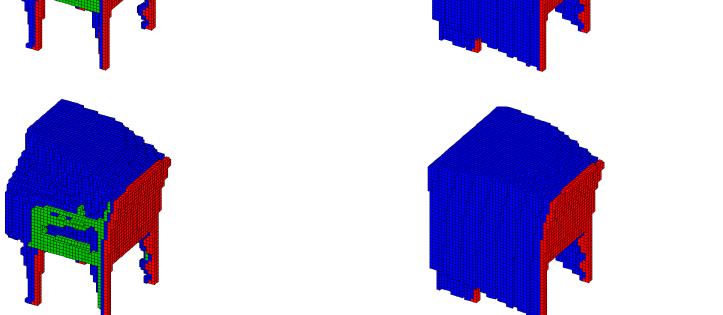


Deep View Planning

Recognition and Completion

three different next-view candidates original surface





3 possible shapes predicted new freespace & visible surface

The original entropy of the first view,

$$H = H(p(y|\mathbf{x_o} = \mathbf{x_o}))$$

Given a fixed number of views, the conditional entropy for

$$H_{i} = H(p(y|\mathbf{x_{n}^{i}}, \mathbf{x_{o}} = \mathbf{x_{o}}))$$

$$= \sum_{x_{n}^{i}} p(\mathbf{x_{n}^{i}}|\mathbf{x_{o}} = \mathbf{x_{o}}) \mathbf{H}(\mathbf{y}|\mathbf{x_{n}^{i}}, \mathbf{x_{o}} = \mathbf{x_{o}})$$

$$i^{th}$$

The reduction of entropy is the mutual information between the new voxel and the label,

$$H - H_i = I(y; \mathbf{x_n^i} | \mathbf{x_o} = \mathbf{x_o}) \ge \mathbf{0}$$

We choose the view with the maximum mutual information

$$V^* = \operatorname{argmax}_{V^i} I(y; \mathbf{x_n^i} | \mathbf{x_o} = \mathbf{x_o})$$

experiements on synthetic depth for two views

	bathtub	bed	chair	desk	dresser	monitor	nightstand	sofa	table	toilet	all
Ours	0.80	1.00	0.85	0.50	0.45	0.85	0.75	0.85	0.95	1.00	0.80
Max Visibility	0.85	0.85	0.85	0.50	0.45	0.85	0.75	0.85	0.90	0.95	0.78
Furthest Away	0.65	0.85	0.75	0.55	0.25	0.85	0.65	0.50	1.00	0.85	0.69
ndom Selection	0.60	0.80	0.75	0.50	0.45	0.90	0.70	0.65	0.90	0.90	0.72
e 3. Comparison of Different Next-Best-View Selections Based on Recognition Accuracy from Two Views - Based											

on an algorithm's choice, we obtain the actual depth map for the next view and recognize the object using those two views in our 3D ShapeNets representation.